Home » Project Material » Production Of High Quality Foam

Production Of High Quality Foam

5 Chapters
|
75 Pages
|
9,653 Words
|
CHEMICAL ENGINEERING

INSTRUCTIONS:

  • You are perusing the project material titled “Production Of High Quality Foam.”
  • The project material on Production Of High Quality Foam is available for instant download.
  • Preview Chapter One of Production Of High Quality Foam at no cost.
  • To access the complete project material for Production Of High Quality Foam, kindly make a donation to support the ongoing maintenance and operation of this website.
  • The provided work on Production Of High Quality Foam is intended solely for academic research purposes and should be utilized strictly as a set of guidelines.
  • Our objective in distributing Production Of High Quality Foam is to aid individuals unfamiliar with project research, specifically writers seeking assistance in this area.
  • Kindly refrain from directly replicating the content provided in Production Of High Quality Foam materials.
  • Feel free to reference “Production Of High Quality Foam” in your work, provided that you paraphrase appropriately.
  • Unauthorized reproduction of Production Of High Quality Foam content is prohibited under our Terms of Use.
  • UniProjects assumes no responsibility if you replicate the content of this Production Of High Quality Foam.
ABSTRACT

The production of high quality foam was carried. The actualization of the production of polyurethane (fibre) foam was made possible by using the components / chemical raw materials such as polyol (polyurethes resin). TDI (toluene di-Iso-cyanate, methylane chloride (MC)-(CH2CL). Silicon oil, stannous octoate, calcum carbonate and water.

As a result of chemistry of polyurethane foams, properties of foams and fibre materials (physical, chemical, thermal and mechanical properties) gotten from the literature, review including the functions and reactions of the components proper formulation was made and conversions / translation to actual weights also done which lead to the production of the desired product. The experiment was done at ambient temperature of 320c following the normal procedures.

The foam produced is of very high density, good quality, durable and profitable. The densities of the various samples are 35kg/m3 and 40kg/m3.

As a result of poor storage conditions of the chemicals mentioned above here in the pilot plant, the stipulated and specified environmental conditions, there is a slight deviation of the foam from the international standard specification of 155. The foam produced is measured to standard and can be used for applied to any field of engineering and technology. They can be used for any purpose and is expected to last longer depending on the handling.

TABLE OF CONTENT

Title page
Approval page
Dedication
Acknowledgement
Table of content
Abstract

CHAPTER ONE
1.0 Introduction
1.1 Problem statement
1.2 Aims and objectives of the project

CHAPTER TWO
2.0 Literature Review
2.1 Origin of foam
2.2 Structure of polyurethane
2.3 Properties of polyurethane foam
2.4 Classification of polyurethane
2.5 Flexible foam
2.6 Rigid foam
2.7 Basic chemistry of foam production
2.8 Polyurethane chemicals and functions
2.8.1 Man chemicals
2.8.2 Blowing agents
2.8.3 Catalyst
2.9 Foam stabilizers
2.10 Making / Agitation
2.11 Characteristic features of methyl come chloride
2.12 Some possible faults, causes and their remedies.
2.13 Characteristics of fibre foams
2.14 Physical properties of foam polyurethane
2.15 Thermal properties of polyurethane foams
2.16 Foam fibres applications
2.17 Factors that causes defect during process

CHAPTER THREE
3.0 Foam formulation
3.1 The roles of chemicals in foaming reactors
3.2 Determination of Chemical consumption rates
3.2.1 Water
3.2.2 Tohiene DI – Isocyate
3.2.3 Blowing Agents
3.2.4 Schlone
3.2.5 Amine
3.2.6 Stannous actuate
3.2.7 Colorant
3.3 Summary of the formulation

CHAPTER FOUR
4.0 Production procedure / Analyses
4.1 Essential Raw Materials Used
4.2 Procedures / methods
4.3 Experimental Results / Analysis
4.4 General Thermal properties
4.5 Chemical properties
4.6 Optical properties
4.7 Electrical properties
4.8 Permanence and service properties
4.9 Characteristic Test
4.10 Sampling and conditioning
4.11 Storage and Handling of urethane raw materials

CHAPTER FIVE
5.0 Discussion

CHAPTER SIX
6.0 Conclusion
6.1 Recommendation
6.2 Cost Analysis
6.3 References

CHAPTER ONE

INTRODUCTION
Polyurethane foam otherwise known as expanded polymer products are group of materials developed as gotten by there action between alcohol with two or more reactive hydroxyl group per molecule. This branch of polymer technology is finding increasing applications in many field of engineering including arts and sciences. Foam was discovered as a result of man’s strong desire in quest to his environment. There are many kinds of foam based on their inherent features such as high rigidity, stiffness per unit weight of polymer thermal and acoustical insulating properties. Cushioning properties or shock absorbency characteristics, low internal stresses of foamed mouldings and ease of forming. As a result of these, extensive range of materials and manufactured articles with different applications are produced from polymer.

The three types of foams are flexible, rigid and semi-rigid foams. It’s used in many structural applications where they form light weight care. Cellular products contains gas usually air, within their structures, they have lower thermal conductivity and are therefore good thermal insulates. Because foams able to dissipate energy reversible and storage capacity. They are used in cushions and are exploited in upholstery bedding laminated clothing and packaging.

Every polymer can be produced in cellular form but these that have been extensively used includes, polyurethane, polystyrene, polyethylene, polyethylene, poly- (vinyl chloride), cellulose acetate, phenolies epoxides, urea-formaldehyde resins, silicones naturally rubber e.g. later from which is made from liquid starting material; sponge rubber and expanded rubber, both made from solid materials. Cellular plastics are basically of two types, flexible foam and rigid or structural foam. They may also be classified according to density as low density foam (< 100kg/m3), medium density foam (600-1000kg/m3).
Cellular polymers may have either an open-cell structure in which the cells are closed separate units (unicellular foams) and may contain gas or air. Materials with open-cell structures have high permeability’s to liquid and gases but because closed – cell structures contain air, their elastic moduli in compression are higher and they have the best thermal insulations.
Polyethylene foams can be produced by injection moulding or may be processed by special machines designed to measure the required ratio of chemical, mixing them together and dispense the reaction mixture in predetermined amounts. There has been continuous development of machine for processing along side the development of polyethylene technology.
Based on the environmental impact and protechona, new dimensions to further challenges in the development of polyethylene technology has taken place which have contributed to the increasing application of polyethylene in our daily lives from foam resistant coating.
As a matter of facts, this research project is centered on flexible foam of higher density and characterization and different types of polymeric reactions could produce different materials like plastics rubber, filmos, fire surface coating and adhesive. As a result of variation in reaction hydroxyl groups of alcohol and isocyanate, senies of polyethylene products have been produced. This ranges from flexible soft and revilement material to hard, brittle and rigid.
Generally, four bare isocyanates and a range of polyol of different molecular weight and functionalities are used in the production of whole spectrum of polyethylene products/materials.
As the case may be, various types of foams with different characteristics features are produced by varying the medium, mixing ratio etc.

1.1 PROBLEM STATEMENT
Based on the fact that some raw materials are gotten from out petrochenueal industries/chemical industries, these unused materials are property channeled to effective use in producing polymer materials e.g. foam, such materials are toluenemdi-isocyanata, polyether, resin, polyol, etc.

1.2 AIMS AND OBJECTIVES OF THE PROJECT
This project/research is aimed at producing polyethylene foam that could be used or applied in various fields to satisfy human wants in Nigeria particularly and the world in general.
It is expected that if this research project is successful, a medium-layer scale industries would be established to best foam production.
Thirdly, an employment opportunity would be created for many Nigerians and would also bring foreign exchange to the country and also attract foreign investors to come into Nigeria.

 

Frequently Asked Questions

If you’re referencing specific information, quotes, or ideas from “Production Of High Quality Foam”, provide a citation in the appropriate format such as APA, MLA, or Chicago.

The title page of downloaded document contains information about the author, editor, and publisher of Production Of High Quality Foam Project material.

Select “Donate & Download,” on top of “Production Of High Quality Foam” and upon completing your donation, you will be directed to the download page or you can chat with us for alternative donation methods.

You have the opportunity to upload content similar to “Production Of High Quality Foam” and receive payment for each download of the material. Engage in a conversation with our representative if you have any Project topics related to Production Of High Quality Foam.