Home » Project Material » Construction Of Flow Nozzle

Construction Of Flow Nozzle

7 Chapters
|
48 Pages
|
5,774 Words
|
CHEMICAL ENGINEERING

INSTRUCTIONS:

  • You are perusing the project material titled “Construction Of Flow Nozzle.”
  • The project material on Construction Of Flow Nozzle is available for instant download.
  • Preview Chapter One of Construction Of Flow Nozzle at no cost.
  • To access the complete project material for Construction Of Flow Nozzle, kindly make a donation to support the ongoing maintenance and operation of this website.
  • The provided work on Construction Of Flow Nozzle is intended solely for academic research purposes and should be utilized strictly as a set of guidelines.
  • Our objective in distributing Construction Of Flow Nozzle is to aid individuals unfamiliar with project research, specifically writers seeking assistance in this area.
  • Kindly refrain from directly replicating the content provided in Construction Of Flow Nozzle materials.
  • Feel free to reference “Construction Of Flow Nozzle” in your work, provided that you paraphrase appropriately.
  • Unauthorized reproduction of Construction Of Flow Nozzle content is prohibited under our Terms of Use.
  • UniProjects assumes no responsibility if you replicate the content of this Construction Of Flow Nozzle.
ABSTRACT

The project title “fabrication of flow nozzle” was done by a selected group of ND II Chemical Engineering Students and the practiced objective (aim) of the project was centered on constructing a nozzle that is capable of transporting fluid from one to the other, to determine the charge in velocity of the moving fluid across two given areas of the nozzle and to be able to measure the quantity of fluid that will flow through the nozzle for a given period of time.
However, the construction of the nozzle was done with materials obtainable locally and the science of operation carried out in constructing the nozzle was; cleaning, marking out, cutting off, drilling, folding, centre punching, assembling, welding, filling, testing and painting.
The flow nozzle was constructed based on the following specifications and dimensions;
Throat Diameter 60mm
The diameter of the duct pipe 140mm
The length of the up stream pipe 200mm
The thickness of the nozzle 3.8mm
The length of the down stream pipe 200mm
The height of the nozzle 820mm
The length of the nozzle 690mm
The size of the pressure valves ½ inch
Furthermore, the selection of materials for the construction of this flow nozzle was based on the factors which includes; ductility, malleability, fabricability, mechanical strength and stability, availability, corrosion resistance and lastly cost factor.
Finally, the constructed flow nozzle and all other expenses cost N8,000.

 

TABLE OF CONTENT

Title page
Approval page
Letter of transmittal
Dedication
Acknowledgement
Table of contents
Abstract

CHAPTER ONE
1.0 Introduction
1.1 Definition of flow nozzle
1.2 History of metering devices
1.3 The scope of the project

CHAPTER TWO
2.0 Literature review
2.1 Theory of flow nozzle
2.2 The characteristics of the nozzle
2.3 Types of flow nozzle
2.4 Advantages of flow nozzle
2.5 Disadvantages of flow nozzle
2.6 The uses of flow nozzle

CHAPTER THREE
3.0 The method of construction

CHAPTER FOUR
4.0 The Method Of Construction

CHAPTER FIVE
5.0 Discussion
5.1 Costing analysis

CHAPTER SIX
5.0 Conclusion

CHAPTER SEVEN
7.0 Recommendation
References
Nomenclature
Appendices

CHAPTER ONE

INTRODUCTION
A nozzle is defined as a device in which the kinetic energy of a fluid is measured in an adiabatic process. A nozzle can also be referred to as a duct of smoothly, varying cross – sectional area in which a steadily flowing fluids can be made to accelerate by a pressure drop along the required duct. There are many applications in practice which require a high velocity steam of fluids and the nozzle is the best means of obtaining this. for example, nozzles are used in steam and gas turbines, in jet engines, in rocket motors, in flow measurement, and in many other applications. There are various type of nozzles namely; the convergent nozzle, the divergent nozzle, and the sizes of these nozzles affect the fluid flow either in one way or other (i.e increasing or decreasing the flow rates).

1.2 HISTORICALLY
In some years past, the measurement of the amount of fluids which flows through pipes was very difficult, simply because, there was past, it was discovered that most of our industrial process or operations require fluid and the quantity of these fluids needed to be known for effective operations and to minimize issues. This stimulated the scientists to go into a research work, which led to the discovery of these metering devices or instrument. Lenodo de vin was the first scientist to discover ‘orifiice meter” in the year 1452 – 1519, during his study of hydraulics of water flow in channels and he decided to use the orifice meter in his research. He also observed that the meter was good for the study of fluid. He also noticed that the introduction of an orifice meter into a pipeline is necessary as this causes a change in the kinetic of the fluid.
Furthermore, still in the field of hydraulic experiment, a scientist called “VENTURI” after 7000 AD discovered a venturi meter. Also, before the beginning of the 20th century, a scientist called “HAREHEL DEUTSHER” discovered the flow nozzle in their various studies of hydraulics.
However, flow meters used for measurement has become a device with the advent of the industrial age because of the need for controlled flow process, accounting methods and more efficiently in operation and also because of the realization that controls flow rate is simple and convenient method to other process variable such as temperature and pressure.
But in this project write up, more emphases will be placed on the working principles of the flow nozzle, the advantage and disadvantage and finally it uses.

1.3 OBJECTIVE/SCOPE OF THE PROJECT
The objective of this project is centered on constructing a flow nozzle, that is capable of transporting fluid (liquid) from one end to the other at a specified pressure, creating pressure differential in the moving fluid and to be able to measure the quantity of fluid that will flow through the nozzle for a given period of time.
The dimensions and specifications of the constructed flow nozzle are as follows:
Throat Diameter 60mm
The diameter of the duct pipe 140mm
The length of the up stream pipe 200mm
The thickness of the nozzle 3.8mm
The length of the down stream pipe 200mm
The height of the nozzle 820mm
The length of the nozzle 690mm
The size of the pressure valves ½ inch
The construction of the flow nozzle was carried out with materials obtained locally and the specifications recommended by the international standard organization (I.S.I) were strictly adhered to, during construction. The constructed flow nozzle should be inserted to a straight pipeline at least 850mm long to eliminate any eddies or other disturbances and substantially steady flow through the nozzle.

 

 

Frequently Asked Questions

If you’re referencing specific information, quotes, or ideas from “Construction Of Flow Nozzle”, provide a citation in the appropriate format such as APA, MLA, or Chicago.

The title page of downloaded document contains information about the author, editor, and publisher of Construction Of Flow Nozzle Project material.

Select “Donate & Download,” on top of “Construction Of Flow Nozzle” and upon completing your donation, you will be directed to the download page or you can chat with us for alternative donation methods.

You have the opportunity to upload content similar to “Construction Of Flow Nozzle” and receive payment for each download of the material. Engage in a conversation with our representative if you have any Project topics related to Construction Of Flow Nozzle.