Home » Project Material » Design And Construction Of A Switch Mode Power Supply

Design And Construction Of A Switch Mode Power Supply

5 Chapters
|
37 Pages
|
5,072 Words
|
ELECTRICAL ELECTRONICS ENGINEERING

INSTRUCTIONS:

  • You are perusing the project material titled “Design And Construction Of A Switch Mode Power Supply.”
  • The project material on Design And Construction Of A Switch Mode Power Supply is available for instant download.
  • Preview Chapter One of Design And Construction Of A Switch Mode Power Supply at no cost.
  • To access the complete project material for Design And Construction Of A Switch Mode Power Supply, kindly make a donation to support the ongoing maintenance and operation of this website.
  • The provided work on Design And Construction Of A Switch Mode Power Supply is intended solely for academic research purposes and should be utilized strictly as a set of guidelines.
  • Our objective in distributing Design And Construction Of A Switch Mode Power Supply is to aid individuals unfamiliar with project research, specifically writers seeking assistance in this area.
  • Kindly refrain from directly replicating the content provided in Design And Construction Of A Switch Mode Power Supply materials.
  • Feel free to reference “Design And Construction Of A Switch Mode Power Supply” in your work, provided that you paraphrase appropriately.
  • Unauthorized reproduction of Design And Construction Of A Switch Mode Power Supply content is prohibited under our Terms of Use.
  • UniProjects assumes no responsibility if you replicate the content of this Design And Construction Of A Switch Mode Power Supply.
ABSTRACT

This work is on switched-mode power supply (SMPS) which is an electronic circuit that converts power using switching devices that are turned on and off at high frequencies, and storage components such as inductors or capacitors to supply power when the switching device is in its non-conduction state. The circuit was built around TNY267 switching regulator which performs the functions of the PWM generator, MOSFET chopper switch, error amp, and control circuit.

At end of this work a switching power supplies was built which have high efficiency and durable which is fit to be used in a variety of electronic equipment, including computers and other sensitive equipment requiring stable and efficient power supply.

TABLE OF CONTENT

TABLE OF CONTENTS
TITLE PAGE
APPROVAL PAGE
DEDICATION
ACKNOWLEDGEMENT
ABSTRACT
TABLE OF CONTENT

CHAPTER ONE
1.0 INTRODUCTION
1.1 BACKGROUND OF THE STUDY
1.2 PROBLEM STATEMENT
1.3 AIM/OBJECTIVE OF THE PROJECT
1.4 SIGNIFICANCE OF THE PROJECT
1.5 SCOPE OF THE PROJECT

CHAPTER TWO
LITERATURE REVIEW
2.0 LITERATURE REVIEW
2.1 REVIEW POWER SUPPLY
2.2 REVIEW OF POWER SUPPLY CHARACTERISTICS
2.3 REVIEW OF GENERAL APPLICATION OF POWER SUPPLY APPLICATIONS
2.4 REVIEW OF TYPES OF POWER SUPPLY
2.5 TYPES OF SWITCH MODE POWER SUPPLY
2.6 APPLICATION OF SWITCH MODE POWER SUPPLY
2.7 ADVANTAGES AND DISADVANTAGES OF SWITCH MODE POWER SUPPLY

CHAPTER THREE
3.0  METHODOLOGY
3.1 BLOCK DIAGRAM OF THE SYSTEM
3.2 CIRCUIT DIAGRAM
3.3 CIRCUIT DESCRIPTION
4.0 RESULT ANALYSIS
4.1 CONSTRUCTION PROCEDURE AND TESTING
4.2 ASSEMBLING OF SECTIONS
4.3 CONSRUCTION OF THE CASING
4.4 TESTING
4.5 INSTALLATION OF THE COMPLETED DESIGN

CHAPTER FIVE
5.0 CONCLUSION AND RECOMMENDATION
5.1 CONCLUSIONS
5.2 RECOMMENDATION
REFERENCES

CHAPTER ONE

1.0 INTRODUCTION
1.1 BACKGROUND OF THE STUDY
A power supply is an essential part of every electronic device. It converts an AC power line voltage to a steady state DC output voltage as required by all electronic circuits. Power supplies can be categorized into two types: linear and Switch Mode.

Linear power consists of a transformer, rectifier, and filtering and regulator circuits. The rectifiers are used to convert 50/60Hz AC voltage to a pulsating DC. The filters are used to convert the pulsating DC to a smooth voltage. Finally, the voltage regulators are used to produce a constant output voltage, irrespective of the variations in the ac line voltage or by the circuit loadings. The output voltage is sampled by an error amplifier block which compares it with a reference signal and generates an error signal on the basis of comparison [3]. The error signal is applied to a series pass element which alters its resistance accordingly and thus regulates the output voltage. Hence, the series pass element absorbs any changes in the input voltage and any dynamic changes in the output voltage due to the load changes, within its designed tolerance band [1]. The size of the components, such as the transformers and output filters, are very bulky in these supplies. Linear power supplies are not suitable for smaller modern electronics system because of their high power loss, low power density and bulky size.

The SMPS converts the available unregulated AC or DC input to a regulated DC output. The input is taken from the AC mains and then rectified, filtered and fed to a high frequency DC-DC converter. SMPS can be operated within the kHz to MHz frequency range. The increased switching frequencies cause a decrease in the size of the energy storage elements, such as the capacitors, inductors and transformers, in an almost linear manner [3].

This work is aimed at building a Switch Mode power supply of 12v,/5amps.

1.2 PROBLEM STATEMENT
Switch Mode power supply was invented to solve problems observed in linear power supply such as low frequency and efficiency. Linear DC regulated power supplies (“linear supplies”) alter the output voltage to the required value through the power frequency (50/60 Hz alternating current) voltage transformer [8]. After being lowered (or raised) to the appropriate AC voltage value, the waveform is rectified, filtered, and stabilized by a voltage regulation circuit, and is then output as a regulated direct current (DC). These types of power supplies have a common characteristic; the voltage transformer works in the linear range [7]. The noise on the input is not amplified on the output. This makes for a quiet and stable output. But, there are drawbacks. The large static loss of the regulating element requires a large heat sink to cool the device and the physical size of a transformer that works in the power line frequencies (50/60 Hz) is large and heavy.  Switching power supply was invented which does not operate at normal power line frequencies (50/60 Hz) but rather at considerably higher frequencies (several KHz to several MHz) [13]. In a switching power supply, the regulating device operates in the saturation or cut-off area as opposed to the linear power supply regulator which operates in the less efficient linear range. Switching power supply has Small size, lighter weight, and higher efficiency (can reach nearly 99%). It also have larger output ripple, RFI/EMI interference from pulsed power, higher output voltage if failure occurs [14].

1.3 AIM AND OBJECTIVES OF THE STUDY
This work is aimed at building a Switch Mode power supply of 12v,/5amps. The objectives are:

  • To build the system prototype
  • To overcome challenges seen in linear power supply
  • To increase efficiency of power supply used in electronics.

1.4 SIGNIFICANCE OF THE STUDY
This work shall serve as a means of learning to how to build an efficient and high frequency power supply which can be used to power our appliances.

The study will also serve as an avenue of knowing the difference between linear power supply and Switch Mode power supply.

1.5 SCOPE OF THE STUDY
The scope of this work covers building a Switch Mode power supply incorporates a switching regulator to convert electrical power efficiently. It is mainly used for obtaining a controlled dc power supply as output. It is used to convert power (voltage) using switching devices that are turned on and off alternatively at high frequencies. It uses storage components like inductors or capacitors to supply power when the switching device is in its non-conduction state (off-state). SMPS possesses high efficiency and is widely used in various electronic equipment such as computers, battery chargers, and other sensitive equipment requiring a stable and efficient power supply.

Frequently Asked Questions

If you’re referencing specific information, quotes, or ideas from “Design And Construction Of A Switch Mode Power Supply”, provide a citation in the appropriate format such as APA, MLA, or Chicago.

The title page of downloaded document contains information about the author, editor, and publisher of Design And Construction Of A Switch Mode Power Supply Project material.

Select “Donate & Download,” on top of “Design And Construction Of A Switch Mode Power Supply” and upon completing your donation, you will be directed to the download page or you can chat with us for alternative donation methods.

You have the opportunity to upload content similar to “Design And Construction Of A Switch Mode Power Supply” and receive payment for each download of the material. Engage in a conversation with our representative if you have any Project topics related to Design And Construction Of A Switch Mode Power Supply.